
RD-fl159 497 PARALLEL UPDATE OF MINIMUM SPANNING TREES IN i/i
LOGARITHMIC TINE.-(U) MARYLAND UNIV COLLEGE PARK CENTER
FOR AUTOMATION RESEARCH I V RAMAKRISHNAN ET AL. NOV 84

UNCLASSIFIED CRR-TR-97 AFOSR-TR-85-0069 F/G 12/1i M

mm~~hIiEl'..'..

1.0 L 2- .25

111111'1_LA 111 I.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OlF STANDAIN)' 1% A

AFOSR-Th. 85-0069

CAR-TR-97 November 1984
CS-TR-1452

o PARALLEL UPDATE OF MINIMUM SPANNING
__ TREES IN LOGARITHMIC TIME

I.V. Ramakrishnan
Shaunak Pawagi

Department of Computer Science
University of ,Ma;yland

College Park, MD 20742

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

DTIC
FLECTE

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742

t o r S 6 -

CAR-TR-97 November 1984
CS-TR-1452

PARALLEL UPDATE OF MINIMUM SPANNING
TREES IN LOGARITHIMIC TrIME

I.V. Ramakrishnaa
Shaunak Pawagi

Department of Computer Science
University of Ma4 ylaiid

College Park, Nf) 20742

ABSTRACT
Parallel algorithms are presented for updating a minimum spanning tree when the

cost of an edge changes or when a new node is inserted in the underlying graph. The
machine model used is a parall random access machine which allows simultaneous
reads but prohibits simultaneous writes into the samne memory location. The algorithms
described in this paper for updating a minimum spanning tree require 0 (log n) time andi
0 In2) processors. These algorithms are efficient when compared to previously known .4-
gorithms for initial construction of a minimum spanning tree that require 0 (loin) time
and use 0 (n-) processors.

apvrova,! ro-

MAflHM J. KANL't

SCief, Toohnial Inf orutlo" Divisionl

DISTRIBUTION STATEM1NT
AppToved Im Pubhe 00A

tDjqtibution Unlimited

The support of the first author by the Office of Naval Research under Coutract
N00014-84-K-0530, and of the second author by the Air Force Office of Scientific
Research under Contract F-4g820-83-C-0082, is gratefully acknowledged.

UNCLASSIFIED'

SECURITY CLA-31FICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

is REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED

2* SECURITN CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
2b DECLASSIFCATIONO.DOWNGRADNGSCHEDULE unlimited.

a PERFORMING ORGANIZATION REPORT NUMBERIS) S. MONITORING ORGANIZATION REPORT NUMERIS)

CAR-TR-97; CS-TR-1452 AFOR.tR 8 5 -0 0 6 9
6& NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(It applncable
University of Maryland Air Force Office of Scientific Research

6c. ADDRESS (City. State and .IP Code 7b. ADDRESS (City. State and ZIP Codei

Department of Computer Science Directorate of Mathematical & Information
College Park MD 20742 Sciences, Bolling AFB DC 20332-6448

S& NAME OF FUNDING/SPONSORING b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (lrapplicabd,,

AFOSR I NM F49620-83-C-0082

Sc ADDRESS ,Clt,. State and ZIP Code) 10 SOURCE OF FUNDI G NOS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO NO

Bolling AFB DC 20332-6448 61102F 2304 A7
11 TITLE Include Security Claification)

PARALLEL UPDATE OF MINIMUM SPANNING TREES IN LOGARITHMIC TIME
12. PERSONAL AuTHOR(S)

I.V. Ramakrishnan and Shaunak Pawagi
13& TYPE OF REPORT 13b. TIME COVERED - 7 14 DATE OF REPORT (Yr. Mo. Day, 15 PAGE COUNT

* Technical F ROM ____TO ____NOV 84 16
116. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on vrse at neces,,y and identify by block numberl

FIELD GROUP SUB GR.

19 ABSTRACT (Continue on reversei f necessary and identify by block number,

-Parallel algorithms are presented for updating a minimum spanning tree when the cost of an

edge changes or when a new node is inserted in the underlying graph. The machine model used

is a parallel random access machine which allows simultaneous reads but prohibits simultan-

eous writes into the same memory location. The algorithms described in this paper for
2

updating a minimum spanning tree require 0(log n) time land 0(n) processors. These

algorithms are efficient when compared to previously known algorithms for initial construc-

tion of a minimum spanning tree that require 0(log 2n) time and use O(n) processors.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEOIUNLIMITED C SAME AS RPT. C3 OTIC USERS C) UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL
i nclude A re Code)

Dr. Robert N. Buchal (202) 767- 4939 NM

DO FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

1

1. Introduction

Incremental graph algorithms deal with recomputing properties of graph after an

incremental change is made to the graph, such as addition and deletion or vertices and

edges, as well as changes in the costs or capacities (if any) associated with the edges of

the graph. Such recomputations are also referred to as "updating" graph properties.

Incremental graph algorithms have received considerable attention in the past. In

particular, Spira and Pan [12], Chin and Houck [21 and Frederickson [61 have investi-

gated the update problem for minimum spanning tree (MST) of an undirected graph.

Cheston [1] and Spira and Pan [121 describe the algorithms for shortest path update.

Even and Shiloach [31 have investigated the update of connected component problem

under the operation of edge deletion. Ibaraki and Katoh [81 examine incremental algo-

rithms for the transitive closure of a directed graph.

The problem of updating an MST involves reconstructing the new MST from the

current MST when the cost of an edge has changed or a vertex along with all its incident

edges is inserted or deleted from the underlying graph. We refer to these two subprob-

lems as the edge update and the vertex update problem respectively. Frederickson [61

describes an O(Vm) algorithm for the edge update problem, where m is the number of

edges in the graph. Spira and Pan [12] and Chin and Houck [2] present an O(n) algo-

rithm for updating the MST of an n vertex graph when a new vertex is inserted into the

graph.

Parallel algorithms for updating an MST have not been studied so far. In this

paper we present parallel algorithms for updating an MST. Our model of computation

is the single instruction multiple data stream (SIMD) model. We assume that all proces-

sors have access to a common memory and that simultaneous reads from the same loca-

* 5 , ,-'"

. . . - .,' ' " . " " " .. . " . '- - - - . . " - . , ' ' " . " " " ' - - " "'V " (• " - ' - -

2

tion are allowed but simultaneous writes to the same location are prohibited. Fortune

and Wylie [5] call such model a parallel random access machine (PRAM). Savage and

Ja'Ja' [111 and Chin et al. [31 have described an O(log2n) ** algorithm for constructing

an MST on PRAMs. Our algorithm for the edge update problem requires O(log n) time.

By using a novel approach to reconstruct an MST we also solve the vertex insertion

problem in O(log n) time.

The rest of the paper is organized into four sections. In Section 2 we describe some

graph-theoretic preliminaries adopting the framework in [131. In Section 3 we describe

the edge update algorithm, and the vertex insertion algorithm is described in Section 4.

2. Preliminaries

Let G=(V,E) denote a graph where V is a finite set of vertices and E is a set of

pairs of vertices called edges. If the edges are unordered pairs then G is undirected else

it is directed. Throughout this paper we assume that V-={1,2,.n}, IVi=n and lEI~m.

We denote the undirected edge from a to b by (a,b) and the directed edge between them

by <a,b>. We say that an undirected graph G is connected if for every pair of vertices

u and v in V, there is a path in G joining u and v. Each connected maximal subgraph

of G is called a component of G. An adjacency matrix A of G is an n X n Boolean matrix

such that A[u,vl=l if and only if (u,v) E E. A tree is a connected undirected graph with

no cycles in it. Let T=(V' ,E') be a directed graph. T is said to have a root r, if r f V

and every vertex v e V is reachable from r via a directed path. If the underlying

undirected graph of T is a tree then T is called a directed tree. If the edges of T are all

reversed then the resulting graph is called an inverted tree. We denote the "undirected"

I"

"°h~..hot h1 fi,, w .. o . .o. lo~

3

path from vertex a to vertex b by fa-bj and directed path by [a-bJ. Let T be a directed

tree with u,v f . Then the lowest common ancestor (LCA(u,v)) of u and v in T is the

vertex w c V such that w is a common ancestor of u and v, and any other common

ancestor of u and v in T is also an ancestor of w in T. Let C:E-R denote a function

that associates a cost with the edges of G. A minimum spanning tree of G is a spanning

tree of G such that sum of the costs of the edges in the tree is minimum over all span-

ning trees for G.

As we will see later on, our algorithm for updating an MST (vertex insertion in par-

ticular) requires the paths from all vertices to the root in an inverted tree. Tsin and

Chin 1131 have described a technique due to Savage 1101 to compute all such paths. For

completeness we now describe their technique.

Let T=(V' ,E') be an inverted tree with V' ={I,2n} and Iv' I=n. Let r be the

root of this tree. For a directed edge <a.b> we say that vertex b is the father of vertex

a.

Definition: F:V' -. V' is a function such that F(i)=the father of vertex i in T for i7r

and F(r)=r.

The function F can be represented by a directed graph F which can be constructed

from T by adding a self-loop to the root r.

From the function F, we define Fk, k>O as follows.

Definition: F 1 :V' N-V' (k>O) such that F°(i)=i, for all i f V and F(i)=F(Fk-l(i)), for

all i cV and k>0.

If i is a vertex in T, Fk(i) is the kh ancestor of i in the inverted tree.

°. .* °- .. - -

• . 1 ...?. ',. :*,, .,,S .,._. S -*.'.' ,Z. ° -...''...''.* ' " "*o " "- "*' . ..-

4

Definition: For each i f V depth(i)= min (kIF0(i)-r and 0 < k <n}.

Lemma 2.1: Given the function F of an inverted tree, F0 can be computed in O(log n)

time using 0(n 2) processors.

Proof: To compute F0 (O<k<n) we proceed as follows. We assume that the processors

are indexed as P(.), P(.2)... P(nn). The instructions within "pardo...dopar" are exe-

cuted in parallel and comments are enclosed within /../

1. for all i (i.n) pardo F0(i)=i, F(i)=(i) dopar; //Processor P(ij) executes the

instruction within pardo.. .dopar.//

2. for t:"O to log(n-1)-1 do

for all s (I <s<2') and for all i (I1 i~n) pardo F 2 +S:=F 2 (FS(i)) dopar; //Processor

P(si) executes the instruction within pardo ... dopar.//

Now step (1) can be done in constant time using n processors. To do the ih iteration of

step (2) in constant time we require 2'n processors. As there are log(n-I)- iterations of

step (2), we therefore require 0 (n2) processors.

The actual computations of Fk(i) (<i<n, <k<n) are performed in an array

in which F ikI contains Fk(i). Once the F array is computed, depth(i) (eitn) can

be found by performing a binary search on the ih row. We search for the left-most

occurrence of r. This takes log n time by assigning a processor per row. However, it can

be done in constant time by assigning a processor to each element in F+. This is done as

follows. Every processor compares its element with the elements in its left and right

neighbors. There is exactly one processor which does not have all the three elements

identical or distinct and this processor locates the left-most occurrence f r. The depth

information is stored in a one-dimensional array D+ .

4:

.
.- ~. * . . -

After the computations for D' are finished, each row of F + is right shifted so that

all the r's except the left-most one are eliminated. As a consequence, the right-most

column of the array contains only the root r. Fig. 2.1 below illustrates an inverted tree

and its array F + after the rows have been shifted right.

0 I 2 3 4 a * 7 • 9 10 II 12

" . I1 7 i 0 2
2 2

a 37?102

4 1 4
S 6 4 2

7 1 6

1 3 11 ,1 12

"...Undefined entries are left blank. *

Fig 2.1

9

3 7 il

4. - i

Lemma 2.2: We can compute the lowest common ancestors or 'C 2 vertex pairs in the

inverted tree in 0(log n) time using O(n 2) processors.

Proof: We make use of the array F+ to design a parallel algorithm for finding the

lowest common ancestors. Let a and b be a vertex pair. If c is their lowest common

ancestor, then row a and row b of F+ will have identical contents for column n-1,

column n-2...., down to the column containing c. After this column the contents of rows

a and b differ. As a result, to determine c, we can perform a binary search on row a and

row b simultaneously in the following way. If the two entries being examined in row a

and row b (in the same column) are different, the search is continued on the right half,

otherwise it is continued on the left half. It takes (log n)+1 time steps to find c with

one processor.

Having obtained the lowest common ancestor we can now identify the unique path

between any two vertices (passing through their lowest common ancestor). We now

describe how to compute the maximum cost edge on the unique path between any two

vertices.L

Let Em(ee 2) denote the maximum cost edge between edges e, and e 2 . Let Fm(i)

(l<i<n) be the maximum cost edge on the path from i to its k~' ancestor in T. Then

- 1. F~M(i) is the edge (i,F'(i))

2. Fk(i) is the edge Em(Fm(i),(Fk-l(i),Fk(i)), k>1.

We assume that the cost of the edge (r,r) in T is -oo.

Lemma 2.3: We can compute F k(i) for all i (I_<i<n) in O(log n) time using O(n2) pro-

cessors.

," "o .. 'S. ., , •

"'0 -''" - • " : , . . .• " i

7

Proof: We describe an algorithm to compute F k(i).

1. For all i (1 i~n) pardo F 1(i)=(i,F(i)) dopar;

2. For t:=o to log(n-1)-I do

For all s (<s<2) and for all i (l<i~n) pardo Fm s(i)=Em(Fm2(i), Fm(F2i)))

dopar;

The analysis is similar to the proof of Lemma 2.1.

The computations of F k(i) are done in a two-dimensional array F + . F+(i,k) is the

maximum cost edge on the path from i to its kth ancestor.

Lemma 2.4: Given F+, E + , and D + , we can find the maximum cost edge on the path
IM

[u-v] (for all u,v c V) in O(log n) time using O(n2) processors.

Proof: First we find LCA(u,v). By Lemma 2.2, this can be done in O(log n) time using

O(n2) processors. Let p be the LCA(u,v). Let x=D+[u]-D+[p] and y=D+[v-D+[pj (that

is, p is the xh ancestor of u and the yh ancestor of v). Finding x and y for all pairs u,v

takes constant time using O(n 2) processors. Finally, the maximum cost edge on the path

ru-v] is Em(F '(u), F-(v)). This again can be computed for all pairs u,v in constant time

using O(n2) processors.

The maximum cost edge on the path [u-v] for all pairs u,v is stored in a two-

dimensional array M+. Note that if F represents a forest of inverted trees then F". D+

and M + contain information about ancestors, depth and maximum cost edges for all the

trees in the forest.

. * . . - * . - . .- a . . - •. * . , - . - . .. a4 ° °

3. Edge Update Algorithms

The edge update problem is concerned with reconstructing the new MST when the

cost of an edge in the underlying graph changes. There are several cases to be handled

in edge-cost updating. The cost of an edge may either increase or decrease and this edge

may currently be either in the tree or not in the tree. If the cost of a tree edge

decreases, or the cost of a non-tree edge increases, then the old MST will not undergo

any change. On the other hand, it may undergo changes when the cost of a tree edge

increases or the cost of a non-tree edge decreases. However, in both cases, at most one

edge will enter the tree and another edge will leave it.

If the cost of a tree-edge (x,y) increases then the new MST is recomputed as fol-

lows.

I. Delete the tree-edge (xy). This creates a forest of two subtrees.

2. Identify the vertices in each of these subtrees.

3. Find the minimum cost edge connecting them.

If the cost of a non-tree edge (u,v) decreases, then we proceed to recompute the

new NIST as follows.

1 Add (u,v) to the old MST. The edge (u,v) induces a cycle in the old MST.

2. Remove the maximum cost edge on this cycle.

See Chin and Houck j21 for a proof of correctness of both these algorithms.

We assume that the update algorithms operate on an MST in the form of an

inverted tree (see Section 2) with an arbitrary vertex as the root. After an edge update.

the algorithms ensure that the reconstructed MST is also preserved as an inverted tree.

*Using the technique of Tsin and Chin (13), the parallel algorithm for constructing the

0

g

%IST in 13.11' can be easily modified to yield an MST in the form of an inverted tree.

Such an algorithm requires O(log 2n) time and uses O(n2) processors.

We now describe a parallel algorithm to update the MST when the cost of a tree

edge (x.y) increases. Let r be the root of the inverted MST. The steps are as follows.

1. We assume, without loss of generality, that the direction of edge (x,y) is from x to

y. Now set Fl(x)=x. This deletes the directed edge <x.y> from the inverted

MST and creates a forest of two subtrees, one of which is rooted at r and the other

at x. This step can be done in constant time with a single processor.

2. Compute the array Ft. By Lemma 2.1, this can be done in O(log n) time using

O(n 2) processors. At the end of this step, all vertices in the subtree rooted at r will

have r in their last column in Ft and all vertices in the subtree rooted at x will

have x in their last column. XVe therefore can identify the vertices in the two sub-

trees.

3. Determine the minimum cost edge connecting these two subtrees. This involves the

following steps.

3a. For each vertex i find the minimum cost edge (ij) such that i and j are not

in the same subtree. Since there are at most n edges incident on i, step (3a)

can be done in O(log n) time using O(n) processors. by assigning n proces-

sors to each vertex.

3b. The minimum cost edge connecting these two subtrees can now be found by

selecting the minimum cost edge among the edges selected in step (3a). As

there are at most n edges, such a selection can again be done in O(log n)

time using O(n) processors.

I

-. Lqt (u,v) be the edge selected in step (3). If edge (u,v) is the same as edge (x,y)

then let Fl(x) =y (that is. the old MST does not change). On the other hand. if

edge (u.v) is not tile same as edge (x,y) then the two subtrees and the edge (u.v)

form the new MST.

5. Finally. we must maintain the new MST is an inverted tree. To do so, we proceed

as follows.

.Assume, without loss of generality, that u is in the subtree rooted at x and v is in

the subtree rooted at r. Now orient the edge (u,v) from u to v. To do so set

Fl(u) v. In step (2) we round the path from vertex v to x. Now reverse the direc-

tiols of the edges on the directed path jv--jx in the old inverted MST. For

instance, if the directed edge - ab-- was on the directed path Iv--j×x then set

Fl(b) -a. This path can have at most n edges and hence the reversal can be done

in constant time using O(n) processors.

This completes the description of the parallel algorithm to update the MST when

the cost of a tree edge (x.y) increases. We now describe a parallel algorithm to update

tile NIST when the cost of a non-tree edge (u,v) decreases. Again, let r be the root of the

inverted MST. The steps then are as follows.

I. Compute arrays F , P F and iW. By Lemma 2.4, we can find the maximum cost

edge (x,y) on the)ath Iu-vI in the MST is O(Iog n) time using O(n 2) processors.

2. If the cost of edge (x,y) is less or equal to the cost of edge (u,v) then the old M1 T

. (oes not change. Otherwise. the edge (x.y) must be deleted from the MST and

edge (uv) must be added.

3. Assume, without loss of generality, that the direction of edge (x,y) in tle inverted

sMSTI is from x to y. Now set F '(x) =x and compute F . f u is ini the subtree

• ..

17.1

rooted at x then direct edge (u,v) from u to v, else direct it from v to u. Comput-

ing F + takes O(log n) time using O(n2) processors.

4. Finally, we have to maintain the new MST as an inverted tree. This can be done

in constant time using O(n) processors (see step (5) of the previous algorithm).

Note that edge insertion and edge deletion can be easily handled by our algorithms.

Assign large positive costs (+oo) to edges not in the underlying graph. If such an edge is

inserted into the graph then we can consider this as equivalent to decreasing the cost of

a non-tree edge. Similarly edge deletion from the MST can be handled by again assign-

ing a large positive cost to that edge and this in turn is equivalent to increasing the cost

of a tree edge.

4. Vertex Update Algorithm

The vertex update problem involves reconstructing the new MST when a vertex is

either inserted or deleted from the underlying graph. We now describe our method of

handling the vertex update problem when a new node is inserted into the underlying

graph. The other case of reconstructing the MST when a vertex is deleted from the

graphs appears difficult to handle. For instance, if the MST is in the form of a "star"

(that is, there exists a vertex on which all the edges in the MST are incident), the dele-

tion of such a vertex deletes all the edges in the tree. Updating the MST then requires

reconstructing it all over again (that is, by examining all the remaining edges in the

graph).

Spira and Pan [12] update the MST in O(n) time when a vertex is inserted in the

graph. Their algorithm constructs the MST all over again by examining the n-I edges in

the old MST and the new edges (there can be at most n of them) brought in by the

-. . ".7..

-\ _ . . : _o . _ .. .----- r-.- -- , ~ . . . - j ... - - -' . .

12

inserted vertex. The best sequential algorithm for constructing an MST requires O(n 2)

time for dense graphs [9] and O(m loglog n) time for sparse graphs [141 (recall that m is

the number of edges in the graph). The O(n) time complexity obtained by Spira and

Pan to update the MST is primarily due to the smaller number of edges that need to be

examined. However, parallel algorithms to construct an MST [3,11] by just examining

the edges in the old MST and the new edges brought in by the inserted vertex still

requires O(log 2n) time. Chin and Houck [2] also describe a sequential algorithm of time

complexity O(n) for the vertex update problem when a new vertex is inserted in the

graph. Their algorithm, however, is inherently sequential.

Our solution to this problem requires a novel way of examining the old tree edges

and the new edges brought in by the inserted vertex. Every pair of edges incident on

the new vertex induces a cycle in the old MST. At most n such edges are incident on

the inserted vertex thereby creating nC2, that is O(n 2) cycles. We break all these cycles

simultaneously by removing the maximum-cost edge on each cycle. We show later on

that the resulting graph is a minimum spanning tree. The details of our algorithm are

as follows.

Let z be the new vertex inserted in the graph.

1. Compute array M + for the old MST. By Lemma 2.4, this can be done in O(log n)

time using O(n 2) processors.

2. Find out the maximum cost edge on each cycles induced by z in the old MST. For

instance, let u and v be any two vertices in the MST and let (z,u) and (z,v) be the

two new edges incident on u and v. Now M+(u,v) is the maximum cost edge on the

path [u-v[. The maximum cost edge on the cycle formed by the edge (z,u), the path

* [u-vl and the edge (v,z) is obtained by selecting the maximum cost edge among the

.*

-A

13

edges (z,u), (v,z) and M[u,v (recall that Mt[u,v is the maximum cost edge on the

path [u-vl in the MST). This selection can be done in constant time using 0(n 2)

processors.

3. Delete the maximum cost edges selected in step (2). For instance, let (x,y) be such

an edge. Assume, without loss of generality, that its direction in the inverted tree

is from x to y. Then, to delete this edge from the inverted tree set F1(x)-x. This

is done by setting F+tx,l]=x in the F+ array. Since an edge may be selected for

deletion by more than one processor, a write conflict may arise. However, such a

conflict can be avoided by using the buddy-system technique due to Hirschberg [7].

This technique deletes all the selected edges without write conflicts in 0(log n) time

using O(n2) processors.

4. Finally, we must maintain the new MST as an inverted tree. To do so, we proceed

as follows. The subtrees created by the deletion of the edges in the old MST are

now connected to each other through edges incident on z. Let x,x 2 xk be the

roots of the k such subtrees formed in step (3). Let w,w 2 wk be the vertices

in the subtrees rooted at x1 ,x2 ,. x , xk respectively that have edges incident on z.

Compute array F+. This array contains the paths from w1 to xI, w2 to x2 .. wk to

Xk. Now reverse the direction of all the edges on these paths. Next, orient all the

- edges (wj,z), (w2 ,z) ... (wk,z) towards z. Thus, z becomes the root of the inverted

tree representing the new MST. By Lemma 2.1, computation of the F+ array

requires O(log n) time using O(n2) processors. Also, reversal of the edges can be

done in constant time using O(n 2) processors.

This completes the description of the algorithm. We will now show that our algo-

rithm indeed produces an MST.

I]
'.

.

14

Theorem 4.1: Our algorithm computes the new MST after a vertex insertion.

Proof: Let T' be the graph obtained after steps (1), (2), (3) and (4) of our algorithm are

executed.

First, T' is acyclic as all the cycles are broken in step (3) of our algorithm. We

next show that T' is connected. Consider a vertex u in T' and let e,,e 2 ek be the

edges incident on it (see Fig. 4.1).

e,

U

Fig 4.1

Let edge ej (j<5k) be the minimum cost edge among them. Now consider all the cycles

containing ej that pass through u. They must also contain some other e, (el#ej). When

these cycles are broken in step (3) of our algorithm ej is retained as it is the minimum

cost edge incident on u.(If at all any edge incident on u is selected for deletion for cycles

passing through u, it is not ej .) Therefore the minimum cost edge incident on each ver-

tex is retained. This in turn creates at most - components.O 2

Now, assume that there are k (k>1) such components. Using a similar argument

based on cycles passing through each component it is easy to see that the minimum cost

edge incident on each component is retained. This in turn creates at most k corn-2

ponents. As the number of components monotonically decrease, we are eventually left

with one component. Therefore T' is connected. T' is a tree as it is acyclic and con-

.:-. ° .. - .- . . N- . - . , • -.. ° .
. . .*

nected.

Finally, it is well known that every non-tree edge is the maximum cost edge on the

cycle it induces in the MST. Our algorithm deletes the maximum cost edge on each

cycle induced by z. Hence T' is an MST. El

Theorem 4.2: Our algorithm takes O(log n) time and requires O(n 2) processors.

Proof: Steps (1), (2), (3) and (4) of our algorithm.

5. Conclusions

Incremental graph algorithms deal with recomputing properties of a graph after an

incremental change has been made to the graph. In this paper we have examined the 7

problem of updating a minimum spanning tree. We have described a parallel algorithm

to update an MST when the cost of an edge changes or a new node is inserted in the

underlying graph. Our algorithm requires O(log n) time using O(n 2) processors. It is

therefore efficient when compared to parallel algorithms for initial construction of a

minimum spanning tree which take O(log2n) time and use O(n 2) processors.

References

[11 Cheston, G., Incremental Algorithms in Graph Theory, TR 91, Dept. of Computer

Science, Univ. of Toronto (1976).

[21 Chin, F. and Houck, D., Algorithms for Updating Minimum Spanning Trees, J.

Comp. Syst. Sci., 16 (1978), pp. 333-344.

[3[Chin, F., Lam, J. and Chen, I., Efficient Parallel Algorithms for Some Graph Prob-

lems, Comm. ACM, 25 (1982), pp. 170-175.

Ao .6

[41 Even, S. and Shiloach Y., An On-line Edge Deletion Problem, J. ACM, 28 (1982),

pp. 1-4.

[51 Fortune, S. and Wyllie, J., Parallelism in Random Access Machines, Proc. Tenth

Symposium on Theory of Computing, San Diego (1078), pp. 114-118.

[61 Frederickson, G., Data Structures for On-line Updating of Minimum Spanning

Trees, Proc. Fifteenth ACM Symposium on Theory of Computing, Boston (1983),

pp. 252-257.

[7] Hirschberg, D., Fast Parallel Sorting Algorithms, Comm. ACM, 21 (1978), pp. 657-

661.

[8] Ibaraki, T. and Katoh, N., On-line Computation of Transitive Closure of Graphs,

Inf. Proc. Letters, 16 (1983), pp. 95-97.

[9] Prim, R., Shortest Interconnection Networks and Some Generalizations, Bell System

Tech. J., 36 (1967), pp. 1389-1401.

[10] Savage, C., Parallel Algorithms for Some Graph Problems, TR-784, Dept. of

Mathematics, Univ. of Illinois, Urbana (1077).

[il] Savage, C. and Ja'Ja' J., Fast Efficient Parallel Algorithms for Some Graph Prob-

lems, SIAM J. Comp., 10 (1981), pp. 682-691.

[12] Spira, P. and Pan. A., On Finding and Updating Spanning Trees and Shortest

Paths, SIAM J. Comp., 1 (1972), pp. 146-160.

[13] Tsin, Y. and Chin, F., Efficient Parallel Algorithms for a Class of Graph Theoretic

problems, SIAM J. Comp., 14 (1984), pp. 580-099.

[14] Yao, A., An O4E~loglogl Vi) Algorithm for Finding Minimum Spanning Trees, Inf.

Proc. Letters, 4 (1975), pp. 21-23.

• . .o4. . • -, ., . . , - . , . . - .'

. . . , - -i -- = ,,i u' i .,=';;,=:,,,,,. '. .- ".' - : .. . -. -.. - •" . -

FILMED7

3-85

DTIC

